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Abstract: A great deal of research and study is being done in the field of malware analysis and
the classification of malware using different models and techniques. Recent years have seen
an increase in the presence of malware code files, making it very time-consuming and tedious
for malware analysts to manually analyze the large number of files. Malware detection is
imperative to the functioning of anti-virus companies, and hence, it is essential to have
efficient tools to quickly analyze a large number of source files and detect the presence of
malware within them. Conventional malware analysis methods are primarily of two types:
static analysis and dynamic analysis (with a hybrid approach also possible). In static analysis,
tools are used to parse entire source files to detect malware. In contrast, dynamic analysis
executes the files in a sample sandbox environment to examine the malware’s behavior.
However, in today’s times, a popular up-and-coming technique is to represent the malware as
images and use machine learning models (neural networks) to classify these images and
malware files into families. After properly training the classifier, the model would be able to
classify them accordingly. Researchers and academicians have been moving towards
automatic malware classification due to the rise in the number and complexity of malicious
code in modern software. Converting malware code into images and then classifying malware
images using neural networks is an attempt to simplify the malware detection process. The
overall objective of this research is to classify the identified malware dataset and train our
model such that it can eventually classify new malware files into families on its own. The
application of modern machine learning techniques, specifically convolutional neural
networks (CNNs), has been employed. Using image processing techniques, an effective
method for categorizing and visualizing malware has been proposed as the first step in this
research. The proposed technique achieves an overall accuracy of 96.57 % with the

combination of CNN and SVM as the classifier.
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1. Introduction

In the modern world, malware attacks are widespread and pose serious threats to various
industries every day. Malware detection and analysis have seen significant research in the past
decade due to the wide variety of obfuscation techniques and the rapid pace at which malware
families have evolved, becoming increasingly dangerous. Several new variants of malware
have emerged, and one of the primary steps in understanding and dealing with malicious code
is to successfully classify them. Various techniques, such as packing, encryption, and the use

of polymorphic malware, have posed new problems for software engineers and researchers.

To handle the ever-increasing evolution of malware, it is crucial to develop more robust and
advanced malware classification methods. Our problem statement revolves around a pertinent
issue: classifying malware files into families and studying the similarities among classes.
Malware file samples that belong to the same family tend to share common characteristics and
trends, making it easier to deal with them if their base class is known. The objective of
analyzing existing machine learning malware classification models, comparing their
effectiveness, and modifying existing approaches to yield different results forms the backbone

of our problem statement.

Existing approaches to malware classification have employed conventional techniques, such
as static and dynamic analysis, in conjunction with modern machine learning-based methods.
The most successful of these include the use of neural networks to achieve higher
effectiveness in malware classification tasks. In the domain of neural networks, significant
success has been found by using image classification techniques to classify malware files.
There has been considerable work in converting binary malicious file code to images and

training models to detect malware files from their image representations.

To develop a thorough understanding and gain insights into the problem statement, we decided
to holistically analyze existing techniques and methodologies by testing three different models
on two popular malware datasets: the Microsoft BIG Malware Dataset and the Mallmg
dataset. Convolutional Neural Networks (CNN), K-Nearest Neighbour (KNN), and
Convolutional Neural Networks amalgamated with Support Vector Machine (CNN+SVM)

have been applied to understanding the approach towards malware classification.

Extensive experiments have been conducted on the two datasets to obtain tangible results and

metrics, providing a comparative analysis between existing techniques. These are also
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intended to serve as the foundation and bedrock for further development in malware
classification models by extending them to evolutionary algorithms and exploring the
potential application of genetic programming in this context. The application of the three

models has yielded significant results that support the problem statement.

Malware analysis has traditionally been carried out to detect malware files using conventional
techniques, such as static and dynamic analysis [1]. However, despite the promising nature of
some of these techniques, especially in dynamic analysis, the fact that they require running
malware files in a virtual environment, and the limited extent to which these techniques can
be effectively scaled, makes them less efficient than several modern machine learning based
alternatives [2]. Various malware families tend to exhibit similar patterns in their interaction
and behavior within systems, and hence, techniques based on machine learning are now an

insightful alternative to malware classification [3].
2. Related Work

The past 10-15 years have been marked by significant efforts in developing intelligent ML-
based malware classification models. These use a variety of techniques used in machine
learning, namely Support Vector Machines [4], Naive Bayes classifiers [5], multidimensional
classifiers [6], and so on, but a lot of success has been achieved using neural networks and
models based on techniques such as CNN and KNN [7]. However, many CNN-based
approaches have encountered issues with large malware samples and have required
modifications to address problems in detection and classification. Consequently, there is a
need for a more advanced CNN architecture to support malware classification [8]. In some
cases, classification methods and approaches have required the execution of actual malware
code as well. In contrast, other related research has limited the extent of viewing malware

families as digital images and classifying them into families [9].

Modern methods in malware classification research have also included the use and
implementation of feature extractors, such as recurrent neural networks, which have been used
to extract features that have even been used to train the classifier to detect malicious malware
[10]. In some techniques, methods have also been applied to reduce the dimensionality of the
input data for the ML model. After this, a neural network is used to reduce the error rate by a
significant margin to obtain the desired results (as seen Dahl et al.) [11]. Some other works in
the domain have employed graph-based approaches built upon clustering techniques [12],
while researchers have also attempted to utilize metadata and analyze import and export tables

to aid in malware analysis [13].
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However, among all the existing research in malware classification, neural network-based
approaches, especially those built upon CNN, have been found to be most successful in
building a generic framework for the purpose of classifying malware samples into their
respective families [11]. Building upon the work of Kalash et. The Al, Maling, and Microsoft
datasets have been utilized to develop an enhanced CNN model for malware family
classification, thereby enhancing the effectiveness of the approach [14]. K-nearest neighbor-
based classification techniques are also implemented to compare the accuracy and other key

metrics of the technique's success.
3. Methodology

The following section will provide a more in-depth examination of the work. It demonstrates
the CNN architecture used to generate images for the malware files. The necessary data for
our problem domain is explained in Section 3.1. Our model architecture and its primary
components are represented in the following parts. This also includes the model's

implementation details and other related components.
3.1 Dataset Description

The popular Malimg dataset, provided by Natarajan et al. [15], is a database of 9,339 malware
samples. These samples are visualized as images before being applied to a CNN. In our
implementation, we have utilized images, and each malware sample in the Mallmg dataset
belongs to one of the reference malware families. There is a total of 25 families. The number
of samples of malware images belonging to each family varies in Mallmg, and the dataset is
split into training and testing samples. In the implementation, 70 percent of the dataset, i.e.,
6,538 malware samples, are part of training, and the remaining 30 percent, i.e., 2,801 malware
samples, are used for testing. There are 25 families (classes) of malware present in the Mallmg

dataset.

Microsoft released a large dataset of malware samples, comprising 21,741 files, in 2015 as
part of its malware classification challenge, which was conducted on Kaggle. The dataset was
partitioned for ease of implementation, with 10,686 malware files divided into two parts:
training and testing, in a 70:30 ratio (7,480 files for training and 3,206 files for testing). Like
Mallmg, the split and distribution of malware samples varied in different datasets. However,

all the 10,686 files belong to one of 9 malware classes.
3.2 Executables Binay Files

One of the first steps in implementing our model was to create byte files (hexadecimal
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representations) of the malware’s Portable Executable (PE) portion. The malware files
comprise several rows (records), and the dataset is divided into two sections for easy
conversion of an executable file into a byte file. The two sections of the dataset are the
instruction’s memory address offset and the instruction itself. The conversion to byte files is
performed using the IDE disassembler tool, which is essential because it serves as a mapping

of the original assembly instructions present in assembly source code files.

Malware binaries used are taken in portable executable format, and this is usually recognized
by their extensions such as .bin, .dll, .exe etc. Portable executable files are made of various

components, which include the following:
1) .text- Code section, contains program instructions
2) .rdata- Read-only data
3) .data- Contains modifiable data
4) .rsrc- Contains resources used by malware

Hexadecimal pairs are combined to create pixel values, and malware binary files are converted
to pixels in grayscale format by taking 8 bits at a time. These grayscale images display a range
of textual patterns that serve as the basis for classifying malware into distinct families. The

patterns are represented in Figure 1.
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Figure 1: Representation of PE files as an image

3.3 Visual Representation of Malware
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The first step in converting a malware sample into its equivalent image is to interpret every
byte as a pixel. Visualizing a malicious executable file as an image makes it easier to
differentiate different sections of the binary source code. Moreover, given the tendency of
malware creators to make only minor variations in new malware, visual references to existing
malware aid in detecting these subtle changes. At the same time, the structure of the malware
samples remains the same, and it is only when observed in great depth and detail that distinct
feature patterns can be noticed. Another reason to go for a visual representation of malware
files is that zero-padding can be detected much more easily. Zero-padding is a technique used
to align blocks and reduce overall entropy in executable files, which becomes more easily

observable in images. The flow is shown in the figure. 2.

Malware Binary

011100110101 Binary to
100101011010 8 bit
10100001 vector Image

Figure 2. Representation of malware in image form

The process can be summarized as follows:

1. Read a binary malware file in the form of a vector containing 8-bit unsigned integers.
2. Convert every component of the vector from binary to decimal value.

3. Save the decimal value using another vector representing samples of malware files.
4. Reshape resultant vector to 2D/3D matrix and visualize as grayscale/ RGB image.

5. Determine the spatial resolution of the binary file as per its size

3.4 Training and Testing of Model

To check the performance of the proposed model, the dataset is split into training and test sets
in a stratified way.

Experiments are conducted across the two datasets as follows:

1) Mallmg malware dataset is a practical malware collection of 9339 malware files from
25 malware families, as indicated in Table 4.1 above. The characteristics of each family,
including the number of samples in each family, are listed in Table 4.1. We divide the
data in the same way as before: 70% in training and 30% in testing.

2) Microsoft (BIG 2015) is a practical malware collection that contains 10686 malware
samples from 9 malware families. In Table 4.2, the data for each family, including the
sample size, is listed. We divide the data in the same way as before: 70% in training
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and 30% in testing. The 2 datasets used as part of this research were then tested by
applying the following techniques:

° KNN
° CNN
° CNN+SVM

The implementation and results of the performed experiments are explained in the following
section.

4. Results and Discussion

The experimental findings are presented in the following chapter. Section 4.1 includes the
implementation of K-NN. Section 4.2 includes the implementation of CNN. Section 4.3
includes the implementation of CNN+SVM.

4.1 K-Nearest Neighbour

A key method for solving classification-based problems is to utilize the standard K-Nearest
Neighbours (K-NN) algorithm. Owing to its simplicity, it is able to largely reduce the number
of hyperparameters that are to be optimized. Furthermore, the absence of an explicit training
phase facilitates the process and is referred to as the scoring phase. Upon input of the training
data, the sample is scored across the entire set by determining the nearest neighbours, followed
by a majority vote-based classification system.

Although the absence of complex parameters eases the training process, it is vital to choose an
optimal value for ‘k’. Under-assigning the ‘k’ value can result in the data becoming overfitted,
making it difficult to classify unknown and new data points, thereby reducing our accuracy.
Over-assigning the ‘k’ value results in underfitting, which also leads to reduced accuracy.
Hence, we ensure that we obtain a value of k in the model that yields the highest accuracy. As
part of the current research, we plot the validation accuracy across a range of values for ‘k’ and
determine the value of ‘k’ at which deviations from that value result in a decline in model
performance.

The upper and lower bounds for the search space of k have been set at 1 and 100, respectively.
Once we’ve fitted the K-NN model on both datasets, it was observed that the Mallmg dataset
yielded optimal performance with the model at k=21, whereas the corresponding optimal value
for the Microsoft dataset was at k=3. This is as shown in the figure. 3 & 4.
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Figure 3 Optimal K-values for Mallmg Dataset
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Figure 4 Optimal K-values for Microsoft Dataset

The results of training and testing our KNN model are represented by a confusion matrix shown
in Figures 5 & 6 below. The first image displays the confusion matrix for Mallmg, while the
next one shows the confusion matrix for the Microsoft BIG Dataset. Tables 1 & Table 2 show
the weighted average accuracy, precision, recall, and F1-score
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Fig. 5. KNN Confusion Matrix for Mallmg Dataset.
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Fig. 6. KNN Confusion Matrix for Microsoft BIG Dataset.
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Table 1 Results Metrics of KNN on Mallmg Data Set & Microsoft Big Dataset.

Model Accuracy Precision Recall F1-Score
KNN (Mallmg) 88.65 % 91% 87% 87%
KNN (Microsoft Big) | 77.21 % 81% 68% 63%

4.2 CNN

Due to the visual representation of the malware object code, the model classification is
inherently an image classification task performed with the assistance of the CNN models. The
various malware visual representations have been classified into categories by the discrete
extraction of patterns within them, as the binary image files obtained from a particular malware
pattern family have a higher propensity to produce images of greater similarity. Upon making
this assumption, we observe that feature extraction helps identify patterns based on the
distribution of pixels on the screen.

A convolutional neural network takes input in the form of an image containing the parameters
of the passed malware image. The input malware image is passed to the CNN model for
classification and processing, which is then followed by multiple convolution layers, each with
filters of 50, 30, and 15, respectively. Every single convolution layer is then backed by Max
Pooling layers of pool size (2X2), which then reduces input signals for the image. Additionally,
a Flatten layer is followed, which essentially normalizes the malware image into 128 neurons
for a Fully Connected layer, preceded by a ReLu Activation Layer. This further classification
is achieved with 9 neurons and 25 neurons for the Microsoft Big 2015 and Mallmg datasets,
respectively. The main structure of the CNN model can be represented as:

1. Convolutional Layer 1 with 50 filters and a kernel size of 3X3

2. ReLu as the Activation Layer

3. Max Pooling Layer with pool size of 2X2

4. Convolutional Layer 2 : 30 filters, (3 * 3) kernel size

5. ReLu as the Activation Layer

6. Convolutional Layer 3 with 15 filters and kernel size of 3X3

7. ReLu as the Activation Layer

8. Max Pooling Layer with pool size of 2X2

0. Dropout Layer which essentially drops the 25 percent of the neurons.
10. Flatten Layer

11. FC Layer 1 with 128 neurons and ReLu as the activation function
12.  Dropout Layer which essentially drops the 50 percent of the neurons.
13.  FC Layer 2 with 50 neurons and Softmax as the activation function

14. FC Layer 3 with 25 neurons and 9 neurons for Malimg and Microsoft Big 2015 dataset,
respectively, using Softmax activation function.

We trained our model for 15 epochs. After training and testing our model on both the Microsoft
Malware Dataset (BIG 2015) and the Mallmg dataset, we achieved accuracies of 86.46% and
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88.11%, respectively. The confusion matrices of the trained and tested models are represented
in Figs. 7 & and 8 for Mallmg and the Microsoft Big dataset, respectively.
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Fig. 7. CNN Confusion Matrix for Mallmg Dataset.
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Fig. 8. CNN Confusion Matrix for Mallmg Dataset.

The results of training and testing our CNN model are represented by accuracy, as well as
calculations of parameters such as F1-score, recall, and precision in Table 2.

Table 2 Results Metrics of KNN on Mallmg Data Set & Microsoft Big Dataset.

Model Accuracy Precision Recall F1-Score
CNN (Mallmg) 86.46 % 91% 88% 88%
CNN (Microsoft Big) | 88.11 % 89% 86% 87%

4.3 CNN and SVM

In this model, the characteristics and strengths of the two models- CNN and SVMs- were
combined to create a hybrid multi-classifier. The Softmax layer in the CNN model was replaced
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with a CNN layer. Moreover, a regularizer (L2) was employed, followed by the use of an
optimizer. The range of weight values that the network could hold was constrained by the CNN
to reduce overfitting. The overall structure can be understood as follows:

1. Convolutional Layer 1 with 50 filters, each with a kernel size of (3, 3)
ReLu as the Activation Layer and Strides = 2

Max Pooling Layer with the pool size of 2X2

Convolutional Layer 2 with 30 filters, each with a kernel size of (3, 3)
ReLu as the Activation Layer

Convolutional Layer 3 with 15 filters, each with a kernel size of (3, 3)
ReLu as the Activation Layer and Strides =2

Max Pooling Layer with the pool size of 2X2

A A T e

Flatten Layer

_
S

FC Layer with 128 neurons and ReLu as the activation function.

I1. SVM Layer, which comprises the Dense layer with kernel regularizer as 12, Softmax
as the activation function

12. Optimizer = ‘adam’ and loss as ‘squared hinge’

The CNN+SVM model yields the best results among all three models used. The accuracy is
increased, and the computational requirements are also decreased. After training and testing
our model on both the Microsoft Malware Dataset (Big 2015) and the Mallmg dataset, we
achieved accuracies of 94.80% and 96.57%, respectively. The results for the training and
testing of our CNN+SVM model are represented by a confusion matrix in Figs. 9 & fig. 10 for
the Mallmg and Microsoft Big datasets, respectively. The accuracy and calculations of
parameters, such as F1l-score, recall, and precision, are presented in Table 3.

Table 3 Results Metrics of CNN+SVM on Mallmg Data Set & Microsoft Big Dataset.

Model Accuracy Precision Recall F1-Score
CNN + SVM (Mallmg) 94.80% 95% 97% 96%
CNN + SVM (Microsoft Big) | 96.57% 95% 95% 95%

Tables 4 & 5 present the final comparison of accuracies between the three techniques on the
two datasets.

Table 4 Comparison of accuracy for Malimg Dataset

Mallmg Dataset
Model Accuracy
CNN 88.11 %
KNN (k=21) 88.65 %
CNN + SVM 96.57 %
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Table 5 Comparison of accuracy for Microsoft BIG Dataset

Microsoft Big Dataset
Model Accuracy
CNN 86.46 %
KNN (k=21) 77.21 %
CNN + SVM 94.80 %

5. Conclusion and Future Scope

The increasing threat posed by malware has made it essential to research malware families and
develop robust techniques for classifying and characterizing them. Our research involved
converting malware file data into a visual representation in the form of grayscale images and
then applying image classification techniques using CNN, K-NN, and CNN+SVM to assess
the effectiveness of these methodologies. The endeavour has been benchmarked by comparing
the results of these different models on two datasets: the Microsoft BIG Malware Dataset and
the Mallmg Dataset, and also by building upon existing research in these domains. Different
down-sampling sizes, filter sizes in CNN, and other model specifications have been used to
obtain various metrics for analysis. The details regarding the implementation of the models,
the results obtained, and the comparative analysis between the techniques are described in
Sections 3 and 4.

The next step in the research is to develop an evolutionary algorithm for malware family
classification. Evolutionary algorithms are a modern machine learning concept inspired by
biological evolution, which have shown great results with a high level of accuracy in various
applications. Using such a technique in a domain like malware classification is likely to
produce highly effective results. Among evolutionary algorithms, future work would attempt
to apply genetic programming (GP), a subset of evolutionary algorithms, for malware
classification. The adaptive nature of genetic programming helps resolve several drawbacks of
traditional classification techniques, thereby forming more functional relationships between
data and its categories.
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