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Abstract: The agricultural sector faces growing challenges due to climate change and the overuse of pesticides, 

which threaten global food security. Accurately forecasting crop yields is critical to addressing these challenges 

and promoting sustainable farming practices. Leveraging a comprehensive crop yield dataset, this research 

integrates meteorological data and pesticide usage information to develop a robust predictive framework for crop 

yield estimation. The approach evaluates multiple machine learning techniques and uses key performance metrics 

such as R2-Score, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error 

(MAE) to assess the models. The analysis identifies significant patterns between environmental factors, pesticide 

applications, and yield outcomes, offering actionable insights for optimizing agricultural productivity. Among the 

models applied, the Voting Classifier demonstrated the best performance with an error rate R2-Score of 86.3%, 

underscoring its reliability for predictive tasks. The results highlight the potential of machine learning to enhance 

agricultural decision-making, reduce dependency on harmful practices, and ensure food security in the face of 

evolving climate conditions. 

Index Terms - Agriculture, crop yield prediction, machine learning, Deep learning. 

1. INTRODUCTION 

Agriculture is a cornerstone of the global economy, 

heavily influenced by meteorological conditions [1]. 

Seasonal agriculture, often referred to as rainfed 

agriculture, depends predominantly on prevailing 

weather patterns. Covering nearly 80% of the 

world’s cropland, rainfed agriculture achieves 

favorable yields when meteorological conditions 

align with crop requirements [2]. However, this 

dependence on natural rainfall and other weather-

related factors makes agricultural productivity 

inherently vulnerable. Variations in rainfall, whether 

scarcity or excess, can significantly affect farmers' 

ability to achieve anticipated yields [3][4]. This 

dynamic underlines the challenge of accurately 

predicting crop production within the field of 

precision agriculture [5]. 

The impacts of climate change exacerbate these 

challenges, threatening the agricultural sector with 

adverse outcomes such as food insecurity, poverty, 

and famine [6]. Climatic variables, particularly 

precipitation and temperature, play pivotal roles in 

determining agricultural productivity. These factors 

not only directly influence crops but also impact 

secondary elements like soil moisture and solar 

irradiance, further complicating yield predictions 

[7]. Focusing on key meteorological variables 

provides critical insights for improving agricultural 

practices and safeguarding food security amid 

evolving climatic conditions. 
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Numerous studies have demonstrated the profound 

effects of climate indicators, both globally and 

regionally, on crop yields and food security [8], [9]. 

For instance, Javadinejad et al. [10] identified strong 

correlations between reduced crop yields and two 

environmental factors: elevated temperatures and 

excessive precipitation. Extreme temperatures can 

adversely affect crop production through increased 

evapotranspiration and respiration rates, as well as 

heightened susceptibility to pest infestations. 

Similarly, excessive precipitation can lead to 

amplified water flow patterns, causing floods and 

increasing the risk of crop failure. Additionally, 

rising temperatures exacerbate water demand for 

crops, further challenging sustainable agricultural 

practices [11]. 

It is crucial to acknowledge that while climatic 

factors may remain consistent within specific 

regions, their impact varies significantly across 

different crops and growth stages [12]. Each crop 

exhibits unique levels of resilience to meteorological 

conditions, with extreme variations in temperature 

or precipitation often leading to substantial 

reductions in yield [13]. These complexities 

underscore the need for accurate prediction models 

that account for variations in climatic conditions and 

their interplay with specific crop requirements. By 

incorporating meteorological data and other critical 

variables, precision agriculture can develop 

effective strategies to mitigate climate-induced 

risks, ensuring more reliable crop yields and 

promoting sustainable agricultural practices. 

2. RELATED WORK 

The literature on crop yield prediction highlights the 

interplay between climate variability, agricultural 

practices, and the application of advanced machine 

learning and deep learning techniques. Burrows [6] 

emphasizes the necessity of understanding crop 

yield behavior under climate change, pointing out 

that extreme weather events, such as prolonged 

droughts and excessive rainfall, critically affect crop 

productivity [15]. These events amplify the 

complexity of managing agricultural systems, where 

key climatic factors such as precipitation and 

temperature play vital roles in shaping crop 

outcomes. Liu and Basso [11] underline the 

importance of developing adaptation strategies that 

consider the impacts of climate variability on both 

crop yields and soil organic carbon. Their findings 

focus on the US Midwest, showcasing the global 

relevance of region-specific insights into mitigating 

adverse climatic effects. Ahmad et al. [14] extend 

this perspective to South Asia, analyzing the impact 

of climate variability on irrigation water demand and 

crop yields, further demonstrating the intricate 

interdependence between water resources and 

agricultural productivity. 

Jhajharia et al. [7] explore the utility of machine 

learning and deep learning for predicting crop 

yields, highlighting their effectiveness in integrating 

diverse datasets, including meteorological data, soil 

properties, and crop-specific information. They 

advocate for the integration of robust predictive 

models to enhance decision-making in precision 

agriculture. Paudel et al. [8] further reinforce this 

argument, illustrating how machine learning can 

forecast crop yields on a large scale by effectively 

analyzing complex interactions between climatic 

factors and crop physiology. Their study 

underscores the scalability of machine learning 

models in agricultural systems, making them an 

indispensable tool for tackling food security 

challenges. 

In the context of India, Reddy and Kumar [18] and 

Nishant et al. [17] explore crop yield prediction 

using machine learning techniques, demonstrating 

how these methods can optimize agricultural 
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productivity by accurately forecasting yields based 

on historical and real-time data. They emphasize the 

critical role of meteorological variables such as 

temperature and precipitation, as well as region-

specific conditions like soil quality and irrigation 

practices, in shaping the effectiveness of these 

predictive models. Kumar et al. [19] expand on this 

by proposing supervised learning approaches 

tailored for the Indian agricultural sector, addressing 

the unique challenges posed by its diverse climatic 

zones and cropping patterns. 

Chakraborty et al. [16] focus on the usability of 

weather forecasts for mitigating climatic variability 

and its effects on maize yields in India's northeastern 

regions. Their study highlights the importance of 

integrating localized weather data with predictive 

algorithms to improve yield forecasts. Similarly, 

Javadinejad et al. [10] identify temperature and 

precipitation as pivotal factors affecting global 

agricultural yields, emphasizing their correlation 

with pest infestations and flood-induced crop 

failures. These findings align with the broader 

consensus that extreme climatic events, whether due 

to rising temperatures or intensified precipitation, 

substantially disrupt agricultural systems. 

The collective insights from these studies 

underscore the significance of leveraging advanced 

technologies, such as machine learning and deep 

learning, to address the multifaceted challenges of 

crop yield prediction in the face of climate change. 

By integrating diverse datasets and developing 

region-specific models, these approaches offer a 

path toward more resilient and sustainable 

agricultural practices. 

3. MATERIALS AND METHODS 

The proposed system aims to forecast crop yields by 

integrating meteorological data and pesticide usage 

information into a comprehensive predictive 

framework. Utilizing a detailed crop yield dataset, 

the system employs machine learning algorithms, 

including Linear Regression, K-Nearest Neighbors 

(KNN), Gradient Boosting, and a Voting Regressor 

that combines a Bagging Regressor with Random 

Forest Regressor (RFR) and Decision Tree 

Regressor (DTR). Each algorithm is optimized using 

techniques like K-Fold Validation, Cross-Validation 

Scores, and GridSearchCV to determine the best 

hyperparameters, ensuring high-performance 

predictions. The system focuses on analyzing the 

relationships between environmental factors, 

pesticide applications, and crop yields to provide 

actionable insights for sustainable agriculture. By 

leveraging multiple algorithms and a robust 

evaluation approach, the framework offers a 

scalable and adaptable solution for improving 

agricultural decision-making and optimizing 

productivity in varying climatic conditions. 

 

Fig.1 Proposed Architecture 

This system predicts crop yields by integrating 

meteorological data and pesticide usage. It utilizes 

machine learning models like Linear Regression, 

KNN, Gradient Boosting, and a Voting Regressor. 

Hyperparameter tuning is performed using K-Fold 
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Validation and GridSearchCV for optimal 

performance. The system analyzes the relationship 

between environmental factors and crop yields to 

provide actionable insights for sustainable 

agriculture. 

i) Dataset Collection: 

The dataset used for this study comprises 28,242 

entries and includes seven features: Area, Item, 

Year, hg/ha_yield (crop yield in hectograms per 

hectare), average_rain_fall_mm_per_year (average 

annual rainfall), pesticides_tonnes (pesticides used 

in tonnes), and avg_temp (average temperature). 

This data integrates key agricultural and 

environmental factors crucial for crop yield [20] 

prediction. The dataset offers a comprehensive view 

of crop production trends across different regions 

and years, enabling detailed analysis of 

meteorological and pesticide influences on 

agricultural productivity. 

 

Fig.2 Dataset Collection Table 

ii) Pre-Processing: 

Pre-processing involves data cleaning, visualization, 

feature selection, and label encoding to prepare the 

dataset for machine learning, ensuring accuracy, 

relevance, and interpretability of the predictive 

framework. 

a) Data Processing: The first step in pre-processing 

is data processing, which involves cleaning the 

dataset to ensure the quality and accuracy of the data 

used for modeling. The removal of duplicate data 

ensures there are no redundant entries that could 

skew the results. This step helps maintain the 

integrity of the dataset. Next, drop cleaning is 

performed, which entails removing any rows or 

columns containing missing or irrelevant values. 

This ensures that the dataset is well-structured and 

consistent, reducing potential noise and errors that 

could affect model performance. 

b) Data Visualization: Data visualization is an 

essential step in understanding the relationships 

between different variables. By using Area and Item 

widgets, the dataset is visualized across different 

geographical regions and crop types. This 

visualization provides insights into the distribution 

of crop yields, rainfall, temperature, and pesticide 

usage for various regions and crop items. In 

addition, a correlation matrix is created to analyze 

the relationships between different numeric features 

like crop yield, rainfall, temperature, and pesticide 

usage. This helps in identifying strong correlations, 

aiding in the understanding of how various factors 

influence crop yields, which in turn supports more 

informed feature selection and modeling decisions. 

c) Feature Selection: Feature selection is crucial for 

identifying the most relevant predictors for crop 

yield forecasting. Based on insights from the base 

paper and domain knowledge, key parameters such 

as average rainfall, pesticides usage, and average 

temperature are chosen as the primary features for 

prediction. These parameters are expected to have a 

significant impact on crop yields. This step 

eliminates any irrelevant or redundant features that 

do not contribute meaningfully to the prediction 

task, improving model efficiency and reducing 

overfitting. 

d) Label Encoding: Since some features, such as 

Area and Item, are categorical in nature, label 
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encoding is applied. This technique converts 

categorical variables into numerical values that 

machine learning algorithms can easily process. By 

assigning a unique numerical label to each category, 

label encoding helps transform the dataset into a 

format suitable for algorithms like KNN, Gradient 

Boosting, and Voting Classifiers. This step ensures 

that the model can handle categorical data without 

introducing biases or errors during training. 

iii) Training & Testing: 

The training and testing phase involves preparing 

the dataset by splitting it into features and labels. 

The features (meteorological data, pesticide usage, 

and other factors) are separated from the target 

variable (crop yield). The dataset is then divided into 

training and testing sets, ensuring that the model is 

trained on one portion and validated on another to 

evaluate its performance. This step is essential to 

ensure the model generalizes well to new, unseen 

data and avoids overfitting. 

iv) Algorithms: 

Linear Regression is a statistical method used to 

model the relationship between a dependent variable 

and one or more independent variables by fitting a 

linear equation. In our project, Linear Regression 

[17] will be utilized to predict crop yields based on 

meteorological data and pesticide usage. We will 

implement Cross-validation scores to assess model 

performance, employing K-Fold Validation to 

ensure robust evaluation by dividing the dataset into 

training and testing subsets. Additionally, 

GridSearchCV will be applied to optimize 

hyperparameters, enhancing the model's accuracy 

and effectiveness in forecasting crop yields. 

K-Nearest Neighbors (KNN) is a non-parametric 

algorithm used for classification and regression 

tasks based on the proximity of data points. In our 

project, KNN [18] will be employed to predict crop 

yields by considering the closest data points in the 

feature space. Cross-validation scores will help 

evaluate the model's performance, while K-Fold 

Validation will ensure that our findings are 

consistent across different data splits. To fine-tune 

the model, we will use GridSearchCV to identify the 

best hyperparameters, improving the model’s 

accuracy and adaptability to variations in data. 

Gradient Boosting is an ensemble machine learning 

technique that builds models sequentially, with each 

new model attempting to correct errors made by 

previous ones. In our project, we will use Gradient 

[19] Boosting to predict crop yields based on 

integrated data sources. The model will leverage 

Cross-validation scores to measure its effectiveness, 

and K-Fold Validation will help in assessing 

performance across different subsets of data. To 

optimize the model's hyperparameters and enhance 

accuracy, we will employ GridSearchCV, ensuring 

that the Gradient Boosting algorithm is well-tuned 

for reliable yield predictions. 

The Voting Regressor is an ensemble method that 

combines the predictions from multiple regression 

models to improve accuracy and robustness. In our 

project, we will implement a Voting Regressor that 

integrates predictions from a Random Forest 

Regressor (RFR) and a Decision Tree Regressor 

(DTR). This approach leverages the strengths of 

different algorithms, enhancing overall predictive 

performance. By using K-Fold Validation, we will 

evaluate the effectiveness of the ensemble method, 

ensuring its reliability. This technique will 

ultimately contribute to more accurate crop yield 

predictions, supporting better agricultural decision-

making. 

4. RESULTS & DISCUSSION 
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R2 Score: The sum squared regression is the sum of 

the residuals squared, and the total sum of squares is 

the sum of the distance the data is away from the 

mean all squared. 

𝑅2 = 1 −
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

(1) 

MSE: Mean squared error (MSE) measures the 

amount of error in statistical models. It assesses the 

average squared difference between the observed 

and predicted values. When a model has no error, the 

MSE equals zero. As model error increases, its value 

increases. The mean squared error is also known as 

the mean squared deviation (MSD). 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2 (2)

𝑛

𝑖=1

 

RMSE: The root mean square error (RMSE) 

measures the average difference between a statistical 

model’s predicted values and the actual values. 

Mathematically, it is the standard deviation of the 

residuals. Residuals represent the distance between 

the regression line and the data points. 

𝑅𝑀𝑆𝐸 = √
∑ ||𝑦(𝑖) − 𝑦̂(𝑖)||2𝑛

𝑖=1

𝑁
 (3) 

MAE: Absolute Error is the amount of error in your 

measurements. It is the difference between the 

measured value and “true” value. For example, if a 

scale states 90 pounds but you know your true 

weight is 89 pounds, then the scale has an absolute 

error of 90 lbs – 89 lbs = 1 lbs. 

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑦𝑖 − 𝑦̂𝑖| (4)

𝑛

𝑖=1

 

In Table 1, the performance metrics—R2-Score, 

MSE, RMSE, and MAE—are evaluated for each 

algorithm. The Voting Classifier achieves the best 

scores, with all metrics. Other algorithms' metrics 

are also presented for comparison. 

 

 

 

 

Table.1 Performance Evaluation Metrics 

Model R2-

Score 

MSE RMSE MAE 

Linear 

Regression 

0.084 6.642538e

+09 

81501.76

4 

62444.31

1 

KNN 0.326 4.886253e

+09 

81501.76

4 

47819.20

9 

Gradient 

Boosting 

0.833 1.209219e

+09 

34773.82

3 

21805.26

3 

Voting 0.863 9.956320e

+08 

31553.63

6 

21438.14

9 

 

Graph.1 Comparison Graph – R2-SCORE 

 

Graph.2 Comparison Graph – MSE 
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Graph.3 Comparison Graph – RMSE 

 

Graph.4 Comparison Graph – MAE 

 

In Graphs (1, 2, 3, & 4) R2-Score is represented in 

light blue, MSE in orange, RMSE in green, and 

MAE in grey. The Voting Classifier outperforms the 

other algorithms in all metrics, with the highest 

values compared to the remaining models. These 

details are visually represented in the above graph. 

 

Fig.3 Home Page 

In the above figure 3, this is a user interface 

dashboard, it is a welcome message for navigating 

page. 

 

Fig.4 User input Page 

In the above figure 4, this is a user input page, using 

this user can upload data for testing. 
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Fig.5 Classification result 

In the above figure 5, this is a result screen, in this 

user will get output for loaded input data. 

 

Fig.5 User input Page 

In the above figure 5, this is a user input page, using 

this user can upload data for testing. 

 

Fig.6 Classification result 

In the above figure 6, this is a result screen, in this 

user will get output for loaded input data. 

5. CONCLUSION 

The agricultural sector faces growing challenges due 

to climate change and excessive pesticide use, which 

jeopardize global food security. Accurately 

predicting crop yields is crucial to mitigate these 

risks and promote sustainable agricultural practices. 

Using a comprehensive crop yield dataset, 

meteorological data, and pesticide usage 

information, a predictive framework was developed 

employing multiple machine learning algorithms. 

The analysis identified significant relationships 

between environmental factors, pesticide 

applications, and crop yield outcomes. Among the 

algorithms tested, the Voting Classifier 

demonstrated the best performance with an error rate 

R2-Score of 86.3% demonstrating its potential as a 

reliable tool for crop yield prediction. This result 

underscores the effectiveness of machine learning in 

enhancing agricultural decision-making, optimizing 

crop management, and ensuring food security in the 

face of evolving climate conditions. By leveraging 

such predictive models, farmers and policymakers 

can better anticipate challenges, reduce dependency 

on harmful practices, and improve overall 

productivity, contributing to sustainable agriculture 

and long-term food security. 

The future scope of this project can be enhanced by 

incorporating advanced machine learning 

techniques such as deep learning models like LSTM 

and CNN to capture complex temporal patterns in 

meteorological data. Additionally, integrating 

satellite imagery and remote sensing data can 

improve the model’s precision. Incorporating 

feature engineering techniques and domain-specific 

data like soil quality and crop rotation history can 

further enhance prediction accuracy. These 
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improvements will make the model more adaptable 

and robust in addressing evolving agricultural 

challenges. 

REFERENCES 

[1] M. Kavita and P. Mathur, ‘‘Crop yield estimation 

in India using machine learning,’’ in Proc. IEEE 5th 

Int. Conf. Comput. Commun. Autom. (ICCCA), 

Oct. 2020, pp. 220–224.  

[2] M. A. A. Osman, J. O. Onono, L. A. Olaka, M. 

M. Elhag, and E. M. Abdel-Rahman, ‘‘Climate 

variability and change affect crops yield under 

rainfed conditions: A case study in Gedaref state, 

Sudan,’’ Agronomy, vol. 11, no. 9, p. 1680, Aug. 

2021.  

[3] M. N. Thimmegowda, M. H. Manjunatha, L. 

Huggi, H. S. Shivaramu, D. V. Soumya, L. Nagesha, 

and H. S. Padmashri, ‘‘Weather-based statis tical 

and neural network tools for forecasting rice yields 

in major growing districts of Karnataka,’’ 

Agronomy, vol. 13, no. 3, p. 704, Feb. 2023.  

[4] C.Song, W.Ma, J.Li, B.Qi, and B.Liu, 

‘‘Development trends in precision agriculture and its 

management in China based on data visualization,’’ 

Agronomy, vol. 12, no. 11, p. 2905, Nov. 2022.  

[5] M. Chandler. (2023). How Does Climate Change 

Affect Agriculture? Accessed: May 12, 2023. 

[Online]. Available: https://impakter.com/how 

climate-change-affects-agriculture/ 

[6] L. Burrows. (Sep. 2022). A Better Understanding 

Of Crop Yields Under Climate Change. Accessed: 

May 12, 2023. [Online]. Available: 

https://seas.harvard.edu/news/2022/09/better-

understanding-crop-yieldsunder-climate-change, 

[7] K. Jhajharia, P. Mathur, S. Jain, and S. Nijhawan, 

‘‘Crop yield prediction using machine learning and 

deep learning techniques,’’ Proc. Comput. Sci., vol. 

218, pp. 406–417, Jan. 2023.  

[8] D. Paudel, H. Boogaard, A. de Wit, S. Janssen, 

S. Osinga, C. Pylianidis, and I. N. Athanasiadis, 

‘‘Machine learning for large-scale crop yield 

forecasting,’’ Agricult. Syst., vol. 187, Feb. 2021, 

Art. no. 103016.  

[9] R. Affoh, H. Zheng, X. Zhang, W. Yu, and C. 

Qu, ‘‘Influences of meteorological factors on maize 

and sorghum yield in Togo, West Africa,’’ Land, 

vol. 12, no. 1, p. 123, Dec. 2022.  

[10] S.Javadinejad, S.Eslamian, and K.O.A.Askari, 

‘‘The analysis of the most important climatic 

parameters affecting performance of crop variability 

in a changing climate,’’ Int. J. Hydrol. Sci. Technol., 

vol. 11, no. 1, pp. 1–25, 2021.  

[11] L. Liu and B. Basso, ‘‘Impacts of climate 

variability and adaptation strategies on crop yields 

and soil organic carbon in the US midwest,’’ PLoS 

ONE, vol. 15, no. 1, Jan. 2020, Art. no. e0225433.  

[12] A.Wegrzyn, A.Klimek-Kopyra, E.Dacewicz, 

B.Skowera, W.Grygierzec, B.Kulig, and E.Flis-

Olszewska, ‘‘Effect of selected meteorological 

factors on the growth rate and seed yield of winter 

wheat—A case study,’’ Agronomy, vol. 12, no. 12, 

p. 2924, Nov. 2022.  

[13] J. Cao, Z. Zhang, F. Tao, L. Zhang, Y. Luo, J. 

Zhang, J. Han, and J. Xie, ‘‘Integrating multi-source 

data for rice yield prediction across China using 

machine learning and deep learning approaches,’’ 

Agricult. Forest Meteorol., vol. 297, Feb. 2021, Art. 

no. 108275.  

[14] Q.-U.-A. Ahmad, H. Biemans, E. Moors, N. 

Shaheen, and I. Masih, ‘‘The impacts of climate 

variability on crop yields and irrigation water 

Journal of Interdisciplinary Cycle Research

Volume XVII, Issue 05, May/2025

ISSN NO: 0022-1945

Page No:203

https://impakter.com/how%20climate-change-affects-agriculture/
https://impakter.com/how%20climate-change-affects-agriculture/
https://seas.harvard.edu/news/2022/09/better-understanding-crop-yieldsunder-climate-change
https://seas.harvard.edu/news/2022/09/better-understanding-crop-yieldsunder-climate-change


demand in South Asia,’’ Water, vol. 13, no. 1, p. 50, 

Dec. 2020.  

[15] V. Geethalakshmi, R. Gowtham, R. Gopinath, 

S. Priyanka, M. Rajavel, K. Senthilraja, M. 

Dhasarathan, R. Rengalakshmi, and K. 

Bhuvaneswari, ‘‘Potential impacts of future climate 

changes on crop productivity of cereals and legumes 

in Tamil Nadu, India: A mid-century time slice 

approach,’’ Adv. Meteorol., vol. 2023, pp. 1–17, 

Jan. 2023.  

[16] D. Chakraborty, S. Saha, B. K. Sethy, H. D. 

Singh, N. Singh, R. Sharma, A. N. Chanu, I. 

Walling, P. R. Anal, S. Chowdhury, S. Hazarika, V. 

K. Mishra, P. K. Jha, and P. V. V. Prasad, ‘‘Usability 

of the weather forecast for tackling climatic 

variability and its effect on maize crop yield in 

northeastern Hill region of India,’’ Agronomy, vol. 

12, no. 10, p. 2529, Oct. 2022.  

[17] P. S. Nishant, P. Sai Venkat, B. L. Avinash, and 

B. Jabber, ‘‘Crop yield prediction based on Indian 

agriculture using machine learning,’’ in Proc. Int. 

Conf. Emerg. Technol. (INCET), Jun. 2020, pp. 1–

4.  

[18] D. J. Reddy and M. R. Kumar, ‘‘Crop yield 

prediction using machine learning algorithm,’’ in 

Proc. 5th Int. Conf. Intell. Comput. Control Syst. 

(ICICCS), 2021, pp. 1466–1470. 

[19] Y. J. N. Kumar, V. Spandana, V. Vaishnavi, K. 

Neha, and V. Devi, ‘‘Supervised machine learning 

approach for crop yield prediction in agriculture 

sector,’’ in Proc. 5th Int. Conf. Commun. Electron. 

Syst. (ICCES), 2020, pp. 736–741. 

[20] R. Patel. Crop Yield Prediction Dataset. 

Accessed: Oct. 9, 2023. [Online]. Available: 

https://www.kaggle.com/datasets/patelris/crop-

yieldprediction-dataset  

 

 

Journal of Interdisciplinary Cycle Research

Volume XVII, Issue 05, May/2025

ISSN NO: 0022-1945

Page No:204

https://www.kaggle.com/datasets/patelris/crop-yieldprediction-dataset
https://www.kaggle.com/datasets/patelris/crop-yieldprediction-dataset

