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Abstract: Battery technology in Electric Vehicles (EVs) has garnered significant attention, with accurate State of 

Charge (SOC) estimation being crucial for ensuring reliable battery operation. In this study, a dataset of lithium-

ion battery discharge cycles, including varying operational conditions, is utilized to model SOC estimation. To 

enhance prediction accuracy, Bayesian Optimization is employed to fine-tune the hyperparameters of advanced 

deep learning algorithms such as Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Bidirectional LSTM (Bi-LSTM). Additionally, a 2D Convolutional Neural Network (CNN2D) is applied, 

achieving a root mean square error (RMSE) of 0.010, showcasing superior performance compared to other 

methods. The proposed approach leverages the strengths of Bayesian Optimization for hyperparameter selection 

and the advanced capabilities of deep learning models to achieve high precision in SOC estimation. The findings 

highlight the potential of this optimized deep learning framework to improve battery management systems, 

ensuring enhanced reliability and efficiency in EV applications. 

“Index Terms - Electric vehicle, battery management system, state of charge, long short term memory, gated 

recurrent unit, bilayer LSTM”.

1. INTRODUCTION 

Countries around the world are prioritizing the 

development of energy-saving and emission-

reduction technologies to mitigate the adverse 

impacts of carbon dioxide emissions and related 

environmental consequences such as climate 

change, sea level rise, the greenhouse effect, and 

biodiversity loss. At COP26 in Glasgow, UK, world 

leaders, business representatives, and organizations 

convened to address these challenges, focusing on 

the urgent need for solutions to the global energy 

crisis. One of the central themes of the conference 

was the transition toward 100% zero-emission 

vehicles (ZEVs) to meet the targets set by the Paris 

Agreement by 2040 [1]. The researcher highlights 

that car electrification, coupled with the adoption of 

renewable energy sources, presents a promising 

pathway to address the energy crisis and achieve a 

40% reduction in greenhouse gas emissions (GHGE) 

[2]. In 2021, electric vehicle (EV) sales reached 6.75 

million units, representing a staggering 108% 

increase from 2020 levels, as EVs offer significant 

advantages in reducing vehicle emissions and 

facilitating the storage of renewable energy [3]. 

The current energy storage methods in the 

transportation sector primarily include lithium-ion, 

nickel-cobalt, lead-acid, and nickel-cadmium 

batteries. Among these, lithium-ion batteries have 
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emerged as the preferred choice due to their superior 

characteristics, including higher specific power, 

greater energy density, longer lifespan, and lower 

self-discharge rates [4]. Lithium-ion batteries come 

in a range of chemical compositions, such as Nickel 

Manganese Cobalt (NMC), Nickel Cobalt 

Aluminum (NCA), Lithium Iron Phosphate (LFP), 

Lithium Cobalt Oxide (LCO), Lithium Manganese 

Oxide (LMO), and Lithium Titanate (LTO) [5]. A 

comparison of these different lithium-ion battery 

types reveals that NCA batteries stand out for their 

exceptional specific energy and power [6]. 

Despite the numerous advantages of lithium-ion 

batteries, challenges remain in ensuring their safety 

and performance. A key consideration in their 

widespread adoption is the reduction in 

manufacturing costs, which has significantly 

contributed to the increasing use of lithium-ion 

batteries across various industries [7]. However, 

these batteries are not without their issues. They 

require a safe operating zone to function optimally. 

The charge transfer reaction used to store energy in 

lithium-ion batteries leads to degradation over time, 

causing problems such as the loss of active 

materials, depletion of lithium inventory, breakdown 

of the Solid Electrolyte Interface (SEI) film, and the 

formation of metallic lithium deposits at the anode. 

These issues can lead to reduced efficiency and, if 

left unchecked, may result in safety hazards. Thus, 

exceeding the tolerance levels of lithium-ion battery 

packs can lead to potential damage and dangerous 

situations. 

2. RELATED WORK 

Lithium-ion batteries have become the cornerstone 

of energy storage systems, particularly in electric 

vehicles (EVs), owing to their superior energy 

density, long cycle life, and relatively low self-

discharge rate. As the demand for EVs grows, the 

importance of accurate state-of-charge (SOC) 

estimation for lithium-ion batteries has gained 

significant attention. SOC estimation is crucial for 

maintaining battery performance, safety, and 

longevity, as it helps in predicting the remaining 

energy in the battery and preventing overcharging or 

deep discharging, which can damage the battery. 

Several methods for SOC estimation have been 

developed, ranging from traditional models to 

advanced machine learning techniques. 

One of the most widely used methods for SOC 

estimation is the Kalman filter, which has been 

extensively studied in the literature. A hybrid 

optimization strategy that combines the Kalman 

filter with a modified sine-cosine algorithm for 

better SOC and health estimation of lithium-ion 

batteries was proposed by Qian and Liu [10]. This 

method improves upon the traditional Kalman filter 

approach by incorporating optimization techniques 

to enhance the estimation accuracy. The dual 

Kalman filter system addresses issues such as the 

non-linearity of battery behavior, ensuring more 

accurate SOC predictions. However, despite its 

success in certain applications, the Kalman filter has 

limitations in handling highly dynamic systems like 

lithium-ion batteries, where the relationship between 

inputs and outputs is non-linear and complex. 

In recent years, there has been a shift towards more 

advanced machine learning techniques for SOC 

estimation. Long Short-Term Memory (LSTM) 

networks, a type of recurrent neural network (RNN), 

have emerged as a powerful tool for modeling time-

series data, such as battery voltage and current. 

LSTM’s ability to capture long-term dependencies 

in sequential data makes it particularly suited for 

SOC estimation. Yang et al. [11] utilized LSTM 

networks combined with an Unscented Kalman 

Filter (UKF) to estimate the SOC of lithium-ion 

batteries. The authors found that LSTM-UKF 
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outperformed traditional methods in terms of 

accuracy and robustness, particularly in dynamic 

and non-linear environments like those found in EV 

applications. 

Another promising approach is the use of Gated 

Recurrent Units (GRU), a simplified version of 

LSTM, which also addresses the vanishing gradient 

problem while being more computationally 

efficient. Li et al. [12] proposed a SOC estimation 

method based on GRU networks, achieving 

significant improvements over conventional 

methods. GRUs, due to their simpler architecture 

and faster training times, offer a practical solution 

for real-time SOC estimation in battery management 

systems. Their results demonstrated the 

effectiveness of GRUs in extracting relevant 

features from battery data, making them suitable for 

applications where quick response times are critical. 

In addition to LSTM and GRU, Bi-directional 

LSTM (Bi-LSTM) networks have also shown 

promise in SOC estimation. Bi-LSTM networks 

extend the traditional LSTM by processing data in 

both forward and backward directions. This 

bidirectional processing helps capture contextual 

information from both the past and future, enhancing 

the accuracy of predictions. Chemali et al. [13] 

explored the use of LSTM and Bi-LSTM networks 

for SOC estimation in lithium-ion batteries. Their 

study highlighted the advantages of Bi-LSTM in 

capturing long-term dependencies and improving 

the accuracy of SOC predictions compared to 

standard LSTM models. The ability to consider 

future data, along with past observations, provides a 

more comprehensive understanding of battery 

behavior, which is crucial for accurate SOC 

estimation. 

In addition to recurrent neural networks, 

convolutional neural networks (CNNs) have also 

been explored for SOC estimation, particularly in 

the context of data that can be structured as 2D 

matrices. CNNs are widely used for image 

processing but can also be applied to time-series data 

when it is represented in matrix form. CNN2D, a 

type of convolutional neural network, has been 

utilized for feature extraction and optimization in 

battery data. Its ability to reduce noise and enhance 

feature representation makes it an effective tool for 

improving SOC estimation. The use of CNN2D for 

SOC estimation was explored by Meng et al. [14], 

who compared various methods for online 

implementable SOC estimation and found CNN2D 

to be an effective approach in reducing prediction 

errors and enhancing battery performance 

monitoring. 

Furthermore, the integration of optimization 

algorithms with machine learning models has gained 

popularity in recent research. Chen et al. [15] 

combined a grey model with genetic algorithms to 

estimate the SOC of lithium-ion batteries. The grey 

model is used to model the uncertain and incomplete 

information typically found in battery behavior, 

while the genetic algorithm optimizes the 

parameters of the model to improve prediction 

accuracy. Their proposed method demonstrated 

significant improvements in SOC estimation, 

particularly in environments where battery data is 

sparse or uncertain. The combination of grey models 

and genetic algorithms highlights the potential of 

hybrid approaches in tackling the complexities of 

SOC estimation in lithium-ion batteries. 

Despite the advancements in SOC estimation 

techniques, challenges remain in achieving high 

accuracy and real-time performance in dynamic 

environments. The non-linear nature of battery 

behavior, influenced by factors such as temperature, 

voltage, and current, makes SOC estimation a 

complex task. Moreover, the varying conditions 
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under which batteries operate, including 

charging/discharging cycles, aging effects, and 

environmental factors, further complicate the 

estimation process. Therefore, while machine 

learning techniques such as LSTM, GRU, Bi-

LSTM, and CNN2D show promise, continuous 

research and refinement are needed to enhance their 

robustness and applicability in real-world scenarios. 

In conclusion, the literature highlights a wide range 

of techniques for SOC estimation of lithium-ion 

batteries, each with its own strengths and 

limitations. While traditional methods like the 

Kalman filter have been effective in some cases, 

machine learning techniques, particularly LSTM, 

GRU, Bi-LSTM, and CNN2D, offer significant 

improvements in accuracy and real-time 

performance. The integration of optimization 

algorithms and hybrid approaches further enhances 

the potential of these methods. However, challenges 

such as non-linear battery behavior, data uncertainty, 

and dynamic operating conditions still need to be 

addressed to achieve reliable and efficient SOC 

estimation for lithium-ion batteries in electric 

vehicles and other applications. 

3. MATERIALS AND METHODS 

The proposed system focuses on accurate State of 

Charge (SOC) estimation for lithium-ion batteries in 

Electric Vehicles (EVs) using advanced deep 

learning techniques. It utilizes a dataset of dynamic 

charge-discharge profiles from lithium-ion batteries 

under varying operating conditions. The system 

integrates algorithms like Long Short-Term Memory 

(LSTM), Gated Recurrent Units (GRU), and 

Bidirectional LSTM (Bi-LSTM) to model the 

complex, non-linear relationships and temporal 

dependencies of battery behavior. Bayesian 

Optimization is employed to fine-tune the 

hyperparameters of the models, ensuring optimal 

performance. By leveraging these advanced 

techniques, the system aims to provide precise SOC 

predictions, enhancing the reliability of battery 

management systems and ensuring efficient 

operation of EVs across diverse scenarios. 

 

Fig.1 Proposed Architecture 

The system architecture depicted in the image 

(Fig.1) illustrate utilizes deep learning to estimate 

the State of Charge (SOC) of lithium-ion batteries in 

electric vehicles. The system begins by normalizing 

the dataset, which includes experimental 

measurements from batteries under various 

conditions. The normalized data is then split into 

training and test sets. Different deep learning 

models, such as LSTM, GRU, Bi-LSTM, and 

Extension CNN2D, are trained on the training data. 

Bayesian Optimization is employed to fine-tune 

hyperparameters for each model, optimizing their 

performance. The trained models are then used to 

predict the SOC of the test data. The accuracy of 

each model is evaluated using performance metrics 

like RMSE and Max Error. The test data is also 

stored in a blockchain for secure and transparent 

record-keeping. 

i) Dataset Collection: 

The dataset used in this study is the 

"Pan_10degC.csv," which contains clinical data 

related to anesthesia. It includes six columns: 

Voltage, Current, Temperature, Capacity, 

Voltage_Average, and Current_Average. The dataset 
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comprises 8399 rows of data, capturing various 

battery parameters under different conditions. 

Missing values within the dataset are handled and 

replaced with zeros to ensure completeness for 

analysis. This comprehensive dataset allows for the 

exploration and modeling of battery performance for 

State of Charge estimation in battery management 

systems. 

 

Fig.2 Dataset 

ii) Normalization: 

Normalization is applied to the dataset to scale the 

features and target values to a uniform range, 

ensuring consistency for model training. The 

"Capacity" column is separated as the target 

variable, while the remaining columns are treated as 

features. Both feature and target values are 

normalized using scaling techniques, which help 

eliminate bias caused by varying units and 

magnitudes. This process enhances the efficiency 

and accuracy of the predictive model by optimizing 

the data for machine learning algorithms. 

iii) Algorithms: 

LSTM: Long Short-Term Memory (LSTM) 

networks learn long-term dependencies in sequential 

data. They analyze historical battery parameters like 

voltage and temperature to accurately predict State 

of Charge (SOC), ensuring reliable battery 

performance and optimizing electric vehicle 

efficiency. 

GRU: Gated Recurrent Unit (GRU) simplifies 

LSTM by efficiently processing sequential data. It 

extracts key features from battery parameters for 

SOC prediction, offering faster training and reduced 

errors, making it ideal for time-series analysis in 

battery management systems. 

Bi-LSTM: Bidirectional LSTM (Bi-LSTM) 

processes data in both forward and backward 

directions, capturing complete temporal patterns. It 

improves SOC prediction accuracy by 

simultaneously analyzing past and future battery 

parameters, ensuring comprehensive insights for 

effective electric vehicle battery management. 

CNN2D: Convolutional Neural Network 2D 

(CNN2D) optimizes feature extraction from battery 

data formatted as 2D matrices. By leveraging 

convolutional layers, it enhances SOC prediction 

accuracy, reducing noise and improving feature 

representation for efficient electric vehicle battery 

performance estimation. 

4. RESULTS & DISCUSSION 

RMSE: The root mean square error (RMSE) 

measures the average difference between a statistical 

model’s predicted values and the actual values. 

Mathematically, it is the standard deviation of the 

residuals. Residuals represent the distance between 

the regression line and the data points. 

𝑅𝑀𝑆𝐸 = √
∑ ||𝑦(𝑖) − 𝑦̂(𝑖)||2𝑛
𝑖=1

𝑁
(1) 

Table (1) evaluate the performance metrics—RMSE 

and Model Error—for each algorithm. The CNN2D 

consistently outperforms compared to all other 
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algorithms. The tables also offer a comparative 

analysis of the metrics for the other algorithms.

Table.1 Performance Evaluation Table 

ML Model RMSE Model Error 

LSTM 0.029 0.197 

GRU 0.023 0.080 

BiLSTM 0.019  0.149 

CNN2D 0.010  0.045 

Graph.1 Comparison Graphs 

 

RMSE is represented in blue, Model Error in orange, 

Graph (1). In comparison to the other models, the 

CNN2D shows superior performance across all 

metrics. The graphs above visually illustrate these 

findings. 

 

Fig.3 Home Page 

In above fig.3 user interface dashboard for a battery 

state-of-charge estimation application with 

navigation and a welcome message. 
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Fig.4 Registration Page 

In above fig.4 sign-up form with fields for username, 

name, email, mobile number, and password buttons. 

 

Fig.5 Login Page 

In above fig.5 Sign-in form with username and 

password fields, "Remember Me," "Forgot 

Password,". 

 

Fig.6 Main Page 

In above Fig.6 home page dashboard with 

navigation (Prediction, Graph, Notebook, Signout) 

for a battery state-of-charge estimation application. 

 

Fig.7 Upload Input Page 

In above Fig.7 form with coordinate input field and 

upload button. 
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Fig.8 Predict Result for given input 

In above Fig.8 Prediction result based on the input 

test data was displayed. 

5. CONCLUSION 

In conclusion, the proposed deep learning-based 

approach significantly improves State of Charge 

(SOC) estimation for lithium-ion batteries in 

Electric Vehicles (EVs). By employing advanced 

algorithms such as Long Short-Term Memory 

(LSTM), Gated Recurrent Units (GRU), and 

Bidirectional LSTM (Bi-LSTM), the system 

successfully captures the complex, non-linear 

relationships and temporal dependencies within the 

battery's charge-discharge behavior. The 

experimental dataset, consisting of various operating 

conditions, provides a comprehensive foundation for 

training the models. The integration of Bayesian 

Optimization for hyperparameter tuning enhances 

the predictive performance, ensuring the models 

operate at their optimal potential. While the CNN2D 

model exhibited a relatively high RMSE of 0.010, 

the deep learning models, particularly LSTM-based 

architectures, demonstrated greater accuracy and 

robustness. These findings underscore the 

effectiveness of utilizing advanced recurrent models 

in SOC estimation, offering a reliable and efficient 

solution for battery management systems in EVs. 

The proposed method’s performance establishes it 

as a promising tool for enhancing the overall 

reliability and safety of electric vehicle systems. 

The feature scope of the proposed system includes 

accurate State of Charge (SOC) estimation for 

lithium-ion batteries in Electric Vehicles (EVs) 

using advanced deep learning techniques like 

LSTM, GRU, and Bi-LSTM. It integrates Bayesian 

Optimization for hyperparameter tuning to improve 

model performance. The system focuses on 

capturing complex charge-discharge behaviors, 

enhancing battery management systems, and 

providing reliable SOC predictions for diverse 

operating conditions, contributing to more efficient 

and safe EV operations. 
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