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Abstract: Speech-based Person Identification (PID) systems are commonly employed in human-computer 

interactions but are often ineffective for Non-speaking and Minimal-speaking (NMS) individuals, who primarily 

use nonverbal vocalizations. To address this, we propose a novel Convolutional Recurrent Neural Network 

(CRNN) model for person identification from both speech and NMS audio, termed S-NMS-PID. The model is 

trained on the ReCANVo dataset, which contains nonverbal vocalizations, and a standard speaker recognition 

dataset for speech audio, with features such as Mel-frequency cepstral coefficients (MFCC) and spectrograms. 

Among the models tested, including VGG16 and ResNet50, MFCC-based features yielded the highest accuracy. 

The proposed CRNN model, enhanced with Supervised Contrastive Learning (SCL) layers, outperformed other 

models, achieving an accuracy of 93%. Further enhancement through the addition of Bi-LSTM and GRU layers 

resulted in an impressive accuracy of 96%. The evaluation metrics—accuracy, precision, recall, and F1-score—

showed that the CRNN-BiLSTM-GRU model was the most effective for person identification from both speaking 

and non-speaking audio inputs. 

Index Terms - Peech-Based Person Identification, Non-Speaking And Minimal-Speaking Individuals, 

Convolutional Recurrent Neural Network, CRNN, Supervised Contrastive Learning, Bi-LSTM, GRU, Mel-

Frequency Cepstral Coefficients, Spectrograms, Recanvo Dataset, Speaker Recognition. 

1. INTRODUCTION 

Person Identification (PID) is a critical process 

across various domains such as security, healthcare, 

and finance. It encompasses different approaches, 

including knowledge-based methods (e.g., personal 

identification numbers and passwords), token-based 

methods (using physical tokens like smart cards), 

and biometric-based methods (utilizing unique 

physiological or behavioral characteristics). 

Biometric-based PID, unlike knowledge-based or 

token-based methods, offers enhanced security and 

convenience by leveraging unique biometric traits 

such as voice recognition or fingerprints, reducing 

the need for physical tokens or memorization, and 

providing a significant barrier to impersonation due 

to the individual uniqueness of these traits [6][15]. 

Among the various biometric identifiers, voice-

based PID has garnered significant attention. Using 

an individual’s voice as a distinct marker has gained 

widespread acclaim for its convenience, precision, 

and user-friendliness. This form of PID has found 

applications across multiple sectors, including 

finance, security, and healthcare, where it serves as 

a reliable means to verify user identities and prevent 

fraudulent activities [18][19]. Additionally, voice-
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based PID plays a pivotal role in the functionality of 

virtual assistants and voice-activated devices, 

enabling seamless interaction with technology 

solely through voice commands [1][17]. 

2. RELATED WORK 

Several studies have explored various methods for 

person identification (PID) using biometric traits, 

with voice-based approaches being particularly 

prominent. Traditional voice-based PID systems 

typically rely on speech audio, where features like 

Mel-frequency cepstral coefficients (MFCC) and 

spectrograms are extracted to identify speakers. For 

instance, Tsai and Lin [6] proposed a system that 

combines MFCC and phase information for speaker 

identification, while Zhao et al. [19] investigated 

speaker identification from human breath sounds, 

demonstrating the potential of non-speech audio in 

PID applications. 

With the advent of deep learning, recent research has 

focused on improving the accuracy and robustness 

of voice-based PID systems. Tran et al. [3][1] 

introduced a stethoscope-sensed system to identify 

individuals based on both speech and breath sounds, 

showing that non-speech vocalizations can also be 

useful for person identification. Furthermore, 

Chauhan et al. [15][16] proposed breath-based 

authentication systems using recurrent neural 

networks (RNNs), which demonstrated the 

feasibility of using breathing patterns as a unique 

biometric feature for user authentication. 

In the realm of nonverbal vocalizations, the 

ReCANVo dataset was created for the purpose of 

recognizing affective and communicative non-

verbal vocalizations, opening new opportunities for 

person identification beyond speech [17]. 

Additionally, recent works have incorporated 

advanced machine learning techniques like 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) to enhance the 

performance of PID systems. For example, a study 

by Tran et al. [2] combined speech and breath 

sounds for person identification, while Nakagawa et 

al. [6] integrated CNNs and RNNs for speaker 

identification with improved accuracy. 

Despite these advances, existing voice-based and 

nonverbal vocalization-based PID systems often 

face challenges when dealing with non-speaking or 

minimal-speaking (NMS) individuals. Addressing 

this gap, our proposed model leverages a 

Convolutional Recurrent Neural Network (CRNN) 

architecture, which integrates both speech and NMS 

audio for person identification, demonstrating 

superior performance in identifying individuals 

from both speech and nonverbal audio sources. 

3. MATERIALS AND METHODS 

In this, we propose a person identification (PID) 

system designed to accommodate both speaking and 

non-speaking/minimal-speaking (NMS) individuals 

through a novel convolutional recurrent neural 

network (CRNN) architecture. This system 

integrates BiLSTM (Bidirectional Long Short-Term 

Memory) and Supervised Contrastive Learning 

(SCL) to enhance identification accuracy [20]. To 

further improve performance, we extend the model 

by incorporating BiGRU (Bidirectional Gated 

Recurrent Units) alongside the BiLSTM layers, 

leveraging the strengths of both architectures [6]. 

This extended CRNN-BiLSTM-GRU model 

efficiently processes both speech and nonverbal 

vocalizations, ensuring versatility for individuals 

with varying communication abilities. The system is 

trained on two datasets: the ReCANVo dataset for 

nonverbal vocalizations, which provides a rich 

source of non-speech audio [17], and a speaker 

recognition dataset for spoken input, allowing the 

system to learn from both types of audio data [18]. 
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We compare the proposed model with traditional 

architectures such as VGG16 and ResNet50, 

focusing on extracting Mel Frequency Cepstral 

Coefficients (MFCC) features for robust voice and 

breath analysis [6]. By combining CRNN with 

BiLSTM and BiGRU, our model offers a 

comprehensive and efficient PID solution, 

accommodating a wide range of communication 

needs, including those of NMS individuals, thereby 

advancing the state of the art in person identification 

systems [1][3][15]. 

 

Fig.1 Proposed Architecture 

The system architecture (fig. 1) depicts a flowchart 

for a person identification system using audio files. 

It begins with a dataset, which undergoes 

preprocessing (including visualization and 

shuffling). The data is then divided into training and 

testing stages. Trained models are evaluated to 

perform person identification through audio. The 

process involves existing VGG16 models and 

proposes a CRNN-BiLSTM with SCL (Softmax 

Cross-Entropy Loss) extension using CRNN-

BiLSTM-GRU with SCL. Evaluation metrics such 

as accuracy, precision, recall, and F1-score assess 

performance. The diagram emphasizes iterative 

refinement, integrating machine learning techniques 

for improved identification accuracy. 

i) Dataset Collection: 

ReCANVo Dataset: 

A dataset of 7077 labeled vocalizations made by 

non-speaking individuals. Each vocalization lasts 

approximately 0.5-4 seconds and is labeled with its 

affective or communicative meaning. Data were 

acquired in real-world settings (homes, schools, etc.) 

and were labeled in real-time by parents or 

caregivers who knew the non-speaking 

communicator well. dataset_file_directory.csv 

provides the name of each vocalization file, the 

corresponding participant ID, and the vocalization 

meaning or label (delighted, frustrated, request, 

etc.). If you use this dataset, please cite Johnson & 

Narain et al., "ReCANVo: A Database of Real-

World Communicative and Affective Nonverbal 

Vocalizations". The authors are Jaya Narain, 

Kristina T. Johnson, Thomas Quatieri, Pattie Maes, 

and Rosalind Picard. This paper provides more 

information about the dataset, including data 

acquisition methodology, pre-processing 

procedures, and participant demographics. 

Speaker Recognition Dataset: 

This dataset contains speeches of five prominent 

leaders namely; Benjamin Netanyahu, Jens 

Stoltenberg, Julia Gillard, Margaret Tacher and 

Nelson Mandela which also represents the folder 

names. Each audio in the folder is a one-second 

16000 sample rate PCM encoded. Originally, the 

speech for each speaker was a one lengthy audio, I 

chunked them into one-second each for easier 

workability. If you combine the chunked audios 

from 0.wav to 1500.wav, it forms a complete speech 

of the respective speaker. A folder called 

background_noise contains audios that are not 

speeches but can be found inside and around the 

speaker environment e.g audience laughing or 

clapping. It can be mixed with the speech while 

training. 

ii) Pre-Processing: 
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The preprocessing phase ensures that the medical 

text data is clean, structured, and suitable for deep 

learning models. It involves several key steps: 

a) Visualization: The visualization step involves 

displaying the total number of subjects in the 

dataset, with a graph showing subjects' names on the 

X-axis and the corresponding number of audio files 

on the Y-axis. This step helps in understanding the 

distribution of data across different subjects, 

ensuring that the dataset is balanced and 

representative for model training [17]. 

b) Shuffling: To improve the model’s 

generalization and reduce potential bias, shuffling is 

applied to the dataset. Randomizing the order of 

audio files helps ensure that the training process 

does not overfit to any specific order or sequence of 

data, promoting a more diverse and effective 

learning experience [6][18]. This technique is 

commonly employed in machine learning to 

enhance the robustness of models and to prevent 

overfitting by exposing the model to a wide variety 

of data during training. 

iii) Training & Testing: 

The training and testing process involves splitting 

the dataset into training and testing subsets. The 

model is first trained on the training data, where 

features such as Mel Frequency Cepstral 

Coefficients (MFCC) are extracted from both speech 

and nonverbal vocalizations. During training, the 

model learns to differentiate between subjects using 

the Convolutional Recurrent Neural Network 

(CRNN) architecture, enhanced with BiLSTM and 

BiGRU layers for improved performance. After 

training, the model is tested on the testing data to 

evaluate its accuracy, precision, recall, and F1-score. 

This ensures the model generalizes well to unseen 

data and performs robustly across diverse inputs 

[1][6][15]. 

iv) Algorithms: 

VGG16: VGG16 is a convolutional neural network 

(CNN) architecture known for its simplicity and 

depth, comprising 16 layers. In our project, it serves 

as a baseline model for audio classification tasks, 

specifically for identifying speaking individuals. 

VGG16 processes extracted Mel Frequency Cepstral 

Coefficients (MFCC) features from audio files to 

effectively classify speakers. Its hierarchical 

structure enables the learning of complex patterns in 

the data, making it capable of accurate speaker 

recognition for both speaking and non-speaking 

individuals [6][19]. 

CRNN-BiLSTM with SCL: The CRNN-BiLSTM 

with Supervised Contrastive Learning (SCL) 

combines Convolutional Recurrent Neural 

Networks (CRNN) and Bidirectional Long Short-

Term Memory (BiLSTM) networks. This 

architecture is designed to process sequential data, 

such as audio features. In our project, it captures 

both temporal and spatial dependencies in speech 

and nonverbal vocalizations. By leveraging SCL, the 

model enhances feature discrimination between 

different classes, improving person identification 

accuracy for non-speaking and minimal-speaking 

individuals. The use of SCL helps the model learn 

more effectively from labeled audio datasets 

[20][17]. 

CRNN-BiLSTM-GRU with SCL: The CRNN-

BiLSTM-GRU with Supervised Contrastive 

Learning (SCL) integrates Bidirectional LSTM and 

Gated Recurrent Unit (GRU) layers within a 

Convolutional Recurrent Neural Network 

framework. This hybrid architecture efficiently 

captures sequential dependencies while optimizing 

computational performance. In our project, it 

processes both speaking and non-speaking audio 

features, leveraging SCL to enhance learning from 
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distinct vocalization patterns. The combination of 

LSTM and GRU layers facilitates improved model 

performance, enabling accurate person 

identification from diverse audio inputs, including 

both speech and nonverbal vocalizations [1][3]. 

4. RESULTS & DISCUSSION 

Accuracy: The accuracy of a test is its ability to 

differentiate the patient and healthy cases correctly. 

To estimate the accuracy of a test, we should 

calculate the proportion of true positive and true 

negative in all evaluated cases. Mathematically, this 

can be stated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + FP + TN + FN
(1) 

Precision: Precision evaluates the fraction of 

correctly classified instances or samples among the 

ones classified as positives. Thus, the formula to 

calculate the precision is given by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True Positive

True Positive + False Positive
(2) 

Recall: Recall is a metric in machine learning that 

measures the ability of a model to identify all 

relevant instances of a particular class. It is the ratio 

of correctly predicted positive observations to the 

total actual positives, providing insights into a 

model's completeness in capturing instances of a 

given class. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP +  FN
(3) 

F1-Score: F1 score is a machine learning evaluation 

metric that measures a model's accuracy. It 

combines the precision and recall scores of a model. 

The accuracy metric computes how many times a 

model made a correct prediction across the entire 

dataset. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 X 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 100(1) 

In Table 1, the performance metrics—accuracy, 

precision, recall and F1-score —are evaluated for 

each algorithm. The Extension CRNN-BILSTM-

GRU with SCL achieves the highest scores. Other 

algorithms' metrics are also presented for 

comparison. 

 

Table.1 Performance Evaluation Metrics of Classification  

Model Accuracy Precision Recall F1 Score 

Existing VGG16 0.651 0.579 0.564 0.555 

Propose CRNN-BILSTM 

with SCL 

0.940 0.894 0.909 0.895 

Extension CRNN-

BILSTM-GRU with SCL 

0.966 0.940 0.938 0.938 

Graph.1 Comparison Graphs of Classification 
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In graphs 1, accuracy is represented in light blue, 

precision in maroon; recall in green and F1-score in 

violet. In comparison to the other models, the 

Extension CRNN-BILSTM-GRU with SCL shows 

superior performance across all achieving the 

highest values. The graphs above visually illustrate 

these findings. 

 

Fig.2 Home Page 

In above fig.2 user interface dashboard with 

navigation and a welcome message. 

 

Fig.3 Registration Page 

In above fig.3 sign-up form with fields for username, 

name, email, mobile number, and password buttons. 
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Fig.4 Login Page 

In above fig.4 Sign-in form with username and 

password fields, "Remember Me," "Forgot 

Password,". 

 

Fig.5 Main Page 

In above Fig.5 home page dashboard with 

navigation (Prediction, Graph, Notebook, Signout). 

 

Fig.6 Upload Input Page 

In above Fig.6 form with coordinate input field and 

upload button. 

 

Fig.7 Predict Result for given input 

In above Fig.7 Predicted result based on the input 

test data. 

5. CONCLUSION 

In conclusion, this project successfully addresses the 

limitations of traditional speech-based Person 

Identification (PID) systems by proposing a model 

that recognizes both speaking and Non-

speaking/Minimal-speaking (NMS) individuals. By 

leveraging a Convolutional Recurrent Neural 

Network (CRNN) architecture with Supervised 

Contrastive Learning (SCL), our system effectively 

processes both nonverbal vocalizations and speech 

inputs. The integration of Bidirectional LSTM 

(BiLSTM) and GRU (Gated Recurrent Unit) layers 
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further enhances the system’s ability to extract 

meaningful features from audio data, providing a 

comprehensive solution for person identification. 

Using the ReCANVo dataset for nonverbal 

vocalizations and a speaker recognition dataset for 

speech input, our extended CRNN-BiLSTM-GRU 

model demonstrated superior performance, 

achieving an accuracy rate of 96%. This 

performance surpasses that of traditional models, 

making it a powerful tool for identifying individuals, 

regardless of their speaking ability, and ensuring 

greater inclusivity in human-computer interaction 

applications. 

Future scope: In the future, this project can be 

further enhanced by exploring advanced deep 

learning architectures such as Transformers and 

Attention-based models to improve the recognition 

of NMS individuals. Additionally, techniques like 

Transfer Learning and Hybrid Models combining 

CNN with RNN variants could be explored to 

optimize performance. Incorporating more 

sophisticated feature extraction methods, such as 

wavelet transforms or advanced spectrogram 

analysis, may further refine accuracy and efficiency 

in person identification across diverse audio inputs. 
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