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Abstract 

The rapid evolution of cellular networks, particularly 4G and 5G, has been driven by the demands 

of diverse sectors requiring support for sophisticated services and high-volume data traffic. 

However, these networks face significant challenges in meeting stringent performance 

expectations while handling massive uplink and downlink loads. This thesis addresses these 

challenges through two key contributions aimed at enhancing the intelligence and flexibility of 

cellular networks. First, it introduces an intelligent framework for estimating users’ instantaneous 

uplink throughput at fine-grained time intervals. A scalable estimation model leveraging machine 

learning techniques—including Linear Regression, Random Forest, and Support Vector 

Regression—is developed and validated on data gathered from a real-time 4G testbed simulating 

diverse radio conditions. Results indicate high estimation accuracy, with errors under 15%, 

particularly for forecast windows exceeding 700 ms, while highlighting the insufficiency of radio 

measurements alone for precise predictions at smaller timescales. The second contribution focuses 

on enforcing 5G Radio Access Network (RAN) slicing at the resource level from a multi-cell 

perspective. While core network slicing benefits from cloud-based solutions, RAN slicing faces 

complex challenges related to slice orthogonality, satisfaction, scalability, and cooperation. An 

exact optimization model based on constraint programming is proposed, alongside a 2D bin 

packing heuristic, to balance these competing requirements. Additionally, three heuristics are 

introduced to prioritize scalability without sacrificing key performance metrics. Experimental 

results demonstrate strong performance, particularly with two heuristics, underscoring their 

effectiveness in enabling real-time RAN slicing. Collectively, these contributions advance the 

capabilities of 4G/5G networks to meet modern service demands. 
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1. Introduction 

The exponential growth in data-centric applications and the emergence of latency-sensitive, high-

throughput services have placed unprecedented demands on the performance, reliability, and 

adaptability of 4G and 5G cellular networks. The uplink path, in particular, is becoming 

increasingly critical with the proliferation of machine-type communication (MTC), industrial IoT, 

real-time video analytics, and mission-critical services. These paradigms necessitate fine-grained, 

accurate estimation of uplink throughput to enable proactive radio resource management, meet 

Quality of Service (QoS) guarantees, and support advanced scheduling algorithms. 

This research investigates two fundamental challenges in modern cellular network optimisation: 

(i) real-time estimation of users’ instantaneous uplink throughput using machine learning (ML) 

techniques, and (ii) scalable and constraint-aware radio access network (RAN) slicing. To address 

the first, we design a predictive framework that leverages a live 4G testbed to collect diverse lower-

layer (PHY/MAC) eNB metrics under realistic channel and traffic conditions. The dataset is used 

to train and evaluate several supervised ML models—namely Linear Regression (LR), Random 

Forest (RF), and Support Vector Regression (SVR)—to forecast uplink throughput at millisecond-

level resolution. Empirical results show that ML models achieve estimation errors below 15% for 

time windows above 700 ms, though estimation accuracy degrades significantly at shorter 

granularities due to intrinsic radio variability and limitations of the available signal-level features. 

The second contribution addresses the increasingly critical need for RAN slicing in 5G networks, 

where multiple virtualised services with heterogeneous requirements must coexist over a shared 

physical infrastructure. Unlike core network slicing, RAN slicing enforcement is constrained by 

inter-slice orthogonality, SLA compliance, scalability, and inter-cell cooperation. We formulate a 

constraint programming (CP)-based exact model that guarantees optimal resource allocations 

under all four constraints. Additionally, a scalable 2D bin-packing heuristic is introduced, 

optimising for slice satisfaction, orthogonality, and scalability, albeit without explicit cooperation 

mechanisms. To bridge this gap, three novel heuristics are proposed, enabling simultaneous 

enforcement of all slicing constraints. Experimental validation confirms that two of the proposed 

heuristics offer effective trade-offs between computational efficiency and solution quality, making 

them viable for near-real-time RAN slicing scenarios. 

Collectively, this work contributes an integrated approach to enhancing the intelligence and 

flexibility of cellular networks. By combining machine learning-based throughput forecasting with 

constraint-aware RAN slicing mechanisms, the study provides key enablers for the next generation 

of network-aware services and adaptive resource orchestration in 4G and 5G environments. 

The evolution of mobile telecommunications has been marked by significant generational shifts, 

transforming how societies communicate, exchange data, and enable new digital economies. 

Fourth Generation (4G) networks, widely deployed globally, have provided substantial 
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enhancements in mobile broadband performance, supporting high data rates, low latency, and a 

range of services that fuelled the proliferation of smartphones and rich multimedia applications 

[1]–[4]. However, with the relentless growth in user demand, emerging applications such as the 

Internet of Things (IoT), vehicular networks, and Industry 4.0, and the ambition for ubiquitous 

connectivity, the limitations of 4G systems have become increasingly evident [5]–[8]. 

Fifth Generation (5G) networks have emerged to address these challenges, promising not merely 

incremental improvements but transformative capabilities. While 4G largely focused on enhancing 

human-centric communication services, 5G expands the horizon towards machine-type 

communications, ultra-reliable low-latency communication (URLLC), and massive connectivity 

[9]–[12]. This paradigm shift underpins diverse applications ranging from autonomous vehicles 

[27], smart manufacturing [24], to augmented and virtual reality [4], demanding stringent 

performance parameters in throughput, latency, and reliability. 

Technologically, 5G introduces significant innovations over its predecessor, including utilisation 

of millimetre-wave (mmWave) frequencies [4], advanced multiple-input multiple-output (MIMO) 

schemes [17], and novel access techniques such as non-orthogonal multiple access (NOMA) [9], 

[26]. These enable higher spectral efficiency and the capacity to support vastly greater numbers of 

devices concurrently [15], [19]. However, these advancements come with considerable challenges 

in terms of network design, energy consumption [23], security [13], and efficient spectrum 

management [6]. 

One of the key architectural developments in 5G is the concept of network slicing, allowing 

operators to create virtualised, end-to-end networks tailored for specific use cases, thereby 

improving resource utilisation and service flexibility [12], [16]. Moreover, edge computing has 

become integral to 5G, pushing computation closer to end-users to reduce latency and enhance 

quality of experience for applications like real-time video analytics and autonomous systems [8], 

[16]. 

Researchers have extensively explored the trade-offs between energy efficiency and performance 

in 5G deployments, recognising sustainability as a critical design objective [17], [23]. Similarly, 

significant attention has been devoted to developing robust security frameworks, given the 

expanded attack surface introduced by massive device connectivity and virtualised architectures 

[13], [27]. 

Despite the significant strides achieved with 5G, the research community continues to identify 

areas necessitating further innovation, including seamless integration with existing 4G 

infrastructures, optimisation of machine learning techniques for network management [14], [22], 

and preparation for the eventual evolution towards Sixth Generation (6G) networks [3], [21]. 

Performance comparisons have illustrated the considerable gains 5G offers over 4G, yet practical 

deployment scenarios continue to reveal gaps between theoretical promises and real-world 

performance, particularly in coverage at higher frequencies and cost-effectiveness [4], [29]. 
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In summary, while 4G networks have laid the essential groundwork for mobile broadband and 

digital transformation, 5G represents a crucial leap forward, both technologically and 

architecturally, to fulfil the ambitious requirements of modern and future applications [1]–[30]. It 

is within this evolving landscape that research into the comparative performance, capabilities, and 

challenges of 4G and 5G networks remains highly relevant and critical for guiding ongoing 

development and deployment strategies. 

 

2. Methodology 

In this work, we propose a methodology for estimating uplink throughput in 4G networks based 

on eNB lower-layer metrics using supervised machine learning techniques (MLTs), namely Linear 

Regression (LR), Support Vector Regression (SVR), and Random Forest (RF), selected to capture 

both linear and non-linear relationships between network metrics and throughput. LR models 

linear dependencies, SVR leverages kernel functions such as the Radial Basis Function (RBF) to 

handle non-linearities while optimising parameters like ε, γ, and C for balanced bias-variance 

trade-offs, and RF aggregates predictions from multiple decision trees to improve robustness 

against over-fitting, with key hyper-parameters including the number of estimators and tree depth. 

To identify optimal hyper-parameters efficiently, we employ random search combined with K-

fold cross-validation (CV), where K=10 is adopted for reliable error estimation, and further 

mitigate estimation bias through nested CV, which uses an inner loop for hyper-parameter tuning 

and an outer loop for generalisation error assessment. Additionally, we introduce two temporal 

modelling parameters: a forecast window (β), enabling throughput predictions over variable future 

intervals, and a lag window (l), capturing historical metric patterns to enhance prediction accuracy. 

For each MLT and combination of β and l, the methodology applies nested CV to determine the 

model with the lowest root mean square error (RMSE), thereby ensuring accurate, generalisable 

throughput estimation across diverse network conditions. 

 

3. Instantaneous Uplink Throughput Estimation (Technical Single Paragraph) 

Instantaneous uplink throughput estimation seeks to predict the achievable data rate of a user 
equipment (UE) within a fine-grained temporal interval, leveraging evolved Node B (eNB) lower-
layer metrics that capture the physical and MAC layer conditions of the radio interface, including 
received signal power (RX_power), signal-to-interference-plus-noise ratio (SINR), channel 
quality indicator (CQI), and scheduling information. Given the inherent non-linearities and 
dynamic variations in radio environments, traditional analytical models often fall short in 
accurately mapping these metrics to throughput outcomes. Consequently, supervised machine 
learning techniques are employed to model the complex statistical relationships, where input 
vectors comprising historical and current lower-layer measurements are used to estimate 
instantaneous throughput as the output variable. In this work, we implement Linear Regression 
(LR) to examine potential linear correlations, Support Vector Regression (SVR) with non-linear 
kernels such as the Radial Basis Function (RBF) to capture intricate non-linear dependencies, and 
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Random Forests (RF) to exploit ensemble learning for robust predictions. Furthermore, we 
introduce lag windows to incorporate temporal dependencies by utilising past metric values, and 
forecast windows to enable flexible prediction over different time horizons. Model training and 
hyper-parameter optimisation are conducted using Randomised Search in conjunction with nested 
K-fold cross-validation to ensure unbiased estimation errors and mitigate overfitting, ultimately 
enabling precise, generalisable predictions of instantaneous uplink throughput for real-time 
network optimisation and adaptive resource management. 

 

4. 5G RAN Slicing Enforcement 

5G RAN slicing enforcement refers to the set of mechanisms and protocols implemented within 
the Radio Access Network (RAN) to ensure that the logical network slices—each representing a 
virtualised, isolated subset of network resources tailored to specific service requirements—are 
consistently provisioned, maintained, and operated according to their defined Service Level 
Agreements (SLAs). In the 5G architecture, RAN slicing involves partitioning radio resources, 
such as spectrum, scheduling capacity, and transmission power, among multiple slices while 
preserving isolation and quality of service guarantees. Enforcement mechanisms are realised 
through slice-aware Radio Resource Management (RRM), where functions like admission control, 
scheduling, and load balancing are augmented with slice-specific policies and prioritisation rules. 
These include slice-specific configurations for QoS Class Identifiers (QCIs), differentiated 
treatment of traffic flows, and dynamic resource reservation based on real-time demand 
fluctuations and network conditions. Furthermore, enforcement relies on standardised interfaces, 
such as the O-RAN architecture’s E2 interface, enabling coordination between the RAN Intelligent 
Controller (RIC) and distributed units (DUs) for fine-grained control of slice behaviour. Advanced 
techniques, including machine learning-driven predictive resource allocation and closed-loop 
optimisation, are increasingly integrated to enhance slice performance and adaptability under 
diverse traffic scenarios. Through rigorous enforcement of slicing policies, operators can 
simultaneously deliver heterogeneous services—such as enhanced Mobile Broadband (eMBB), 
Ultra-Reliable Low Latency Communications (URLLC), and massive Machine-Type 
Communications (mMTC)—on a shared physical infrastructure while meeting strict performance 
isolation and SLA compliance requirements. 

 

5. Results 

In this study, the feasibility of estimating users’ instantaneous uplink throughput in cellular 
networks based on lower-layer metrics was investigated using a real-time 4G testbed deployed in 
an anechoic chamber, enabling precise analysis of radio phenomena such as noise, multipath 
fading, and radio congestion. Measurements were collected at a granularity of 100 ms, constrained 
by the employed traffic generator. The estimation models were evaluated using three machine 
learning techniques: Linear Regression (LR), Support Vector Regression (SVR), and Random 
Forest (RF). 

It was observed that radio metrics alone, including SNR, RIP, RSSI, and Rx_power, were 
insufficient for accurate throughput estimation at very short time scales below 700 ms. However, 
for forecast windows of 700 ms and longer, acceptable estimation accuracy was achieved using 
these metrics, particularly in simpler radio environments characterised by linear noise variations. 
The integration of 43 lower-layer metrics from the eNB significantly improved estimation 
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performance at small time granularities of 100 ms. When these detailed metrics were utilised, all 
three machine learning techniques produced accurate throughput estimations under varying radio 
conditions. 

The influence of historical measurements was also examined by introducing a lag window of 100 
ms. This led to a slight improvement in estimation accuracy, particularly with the RF model, 
although the overall benefit was modest and introduced additional complexity without significant 
performance gains. Among the evaluated techniques, LR consistently delivered estimation 
accuracy comparable to that of RF and SVR while requiring substantially lower computational 
time, making it particularly suitable for real-time applications, whereas SVR was consistently the 
slowest model across all scenarios. 

In parallel, experiments were conducted to investigate 5G RAN slicing enforcement through 
optimisation and heuristic approaches for resource allocation. Although the ESRP models offered 
optimal resource allocations, their high convergence times limited their suitability for real-time 
deployment. By contrast, the developed heuristics, namely IMA, HMF, and HSF, achieved 
competitive performance, particularly in scenarios involving smaller gNB sets, where IMA and 
HMF attained optimal scores for tied resources and the largest continuous unallocated space 
(LCUS), with convergence times as low as 10 ms. The heuristics demonstrated robustness, 
showing little sensitivity to the number of slices served during the allocation process. Additionally, 
increasing the B size resulted in larger LCUS, enabling more efficient resource allocation 
strategies and supporting advanced transmission schemes for critical services, albeit sometimes at 
the expense of total tied resources (TTR). 

Overall, the findings confirm that accurate estimation of users’ instantaneous uplink throughput at 
fine time granularities is achievable through the use of detailed lower-layer metrics and suitable 
machine learning models. Furthermore, the heuristic strategies developed for 5G RAN slicing 
enforcement demonstrate strong potential for real-time application, ensuring efficient resource 
allocation while adhering to essential slicing requirements. 
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Figure 1: Presents 3D plots of the RMSE as a function of lag and forecast window sizes for 
estimations performed on the RXpower, RSSI, RIP, All, and SNR datasets, employing Linear 
Regression as the underlying machine learning technique 
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Figure 2:  Illustrates 3D plots of RMSE as a function of lag and forecast window sizes for 
estimations conducted on the RXpower, RSSI, RIP, All, and SNR datasets, using Support Vector 
Regression (SVR) as the underlying machine learning technique. 

 

 

Figure 3: Displays 3D plots of RMSE as a function of lag and forecast window sizes for 
estimations performed on the RXpower, RSSI, RIP, All, and SNR datasets, employing Random 
Forest (RF) as the underlying machine learning technique. 
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Figure 4: Linear Regression-based estimations on cross-layer metrics 

 

 

Figure 5: SVR based estimations on cross-layer metrics 
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Figure 6: RF based estimations on cross-layer metrics 

 

Figure 7: LR based estimations time using cross-layer metrics 
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Figure 8: SVR based estimations time using cross-layer metrics 

 

Figure 9: RF based estimations time using cross-layer metrics 
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Figure 10: Convergence Time (S) performance 

 

Figure 11: Convergence Time with variation of B size 
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Figure 12 : LCUS with variation of S size 
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Figure 13: LCUS with variation of B size 
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6. Conclusion and Future Work 

This work has addressed the significant challenges facing 4G and 5G cellular networks, which are 
expected to support diverse sectors requiring sophisticated services and applications with 
demanding performance criteria and substantial traffic volumes in both uplink and downlink 
directions. Two principal contributions have been made to meet these challenges. 

The first contribution concerns the integration of intelligence into cellular networks through the 
estimation of users’ instantaneous uplink throughput at small time granularities. To this end, a 
scalable estimation model leveraging machine learning techniques, including Linear Regression, 
Random Forest, and Support Vector Regression, was developed and evaluated. A real-time 4G 
testbed was deployed to replicate various radio phenomena, enabling the creation of 
comprehensive datasets that incorporate cross-layer eNB metrics. The estimation model 
demonstrated accurate predictions across forecast windows ranging from 100 ms to 1 s, achieving 
errors below 15% when utilising datasets with extensive lower-layer metrics. It was also concluded 
that radio measurements alone are inadequate for reliable throughput estimation at small time 
scales, whereas acceptable estimations can be obtained for larger time granularities from 700 ms 
onwards. 

The second contribution relates to the enforcement of 5G RAN slicing at the resource level from 
a multi-cell perspective, addressing the stringent requirements associated with RAN slicing, such 
as orthogonality, satisfaction, scalability, and cooperation enabling. An exact optimisation model 
using constraint programming was developed to satisfy these requirements, complemented by a 
2D bin-packing heuristic to support scalability, albeit at the expense of full cooperation enabling. 
While the exact model proved effective for large time-scale allocations, it exhibited slow 
convergence for larger problem instances. Consequently, three heuristics were proposed, 
prioritising scalability while still addressing all four slicing requirements. Experimental results 
demonstrated that two of these heuristics delivered strong performance, making them well-suited 
for real-time RAN slicing deployments. 

Looking forward, several avenues for future research and development have been identified. One 
significant opportunity lies in advancing towards intelligent, proactive systems, where 
instantaneous throughput estimation could serve as a critical input for sophisticated schedulers and 
congestion control mechanisms. The growing adoption of network softwarisation and Software 
Defined Networking (SDN) provides fertile ground for integrating these estimation models into 
real-time decision-making processes, enhancing the agility and responsiveness of cellular 
networks. 

Another promising direction is the extension of the current experimental framework to a 5G 
platform, particularly through the development of an open-source testbed based on 
OpenAirInterface (OAI). Such a platform would facilitate real-time evaluation of slicing heuristics 
and provide the research community with remote access for validating advanced slicing strategies 
in versatile 5G scenarios. 

Further research is also warranted into refining resource allocation strategies for RAN slicing, 
especially to balance scalability and cooperation enabling. One potential approach involves 
designing allocation schemes that, rather than reserving large contiguous unallocated spaces, 
deliberately create efficiently distributed sparse regions capable of accommodating varying slice 
demands. This would likely require aggregation heuristics allowing network operators to weight 
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different requirements according to specific operational priorities. Incorporating traffic forecasting 
to anticipate slice demand fluctuations could further enhance the effectiveness of such strategies. 

Lastly, scaling RAN slicing across broader network domains presents additional challenges and 
opportunities. Expanding from single SD-RAN domains to large-scale deployments involving 
multiple SD-RANs necessitates coordinated or cooperative approaches. Coordinated slicing relies 
on selecting a reference SD-RAN to define resource allocations replicated by neighbouring 
domains, offering simplicity but potentially limiting adaptability. Alternatively, cooperative 
slicing involves decentralised decision-making and resource sharing among adjacent SD-RANs, 
promising greater flexibility and efficiency, albeit at the cost of increased signalling and potential 
complexity. Developing practical frameworks to support these large-scale cooperative solutions 
remains a critical area for future exploration. 

In summary, while this work has demonstrated the feasibility and effectiveness of both 
instantaneous uplink throughput estimation and RAN slicing enforcement in cellular networks, 
further advancements are essential to enable seamless, intelligent, and scalable solutions, 
particularly as networks evolve towards 5G and beyond. 
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